Low-mass planets in nearly inviscid disks: numerical treatment
نویسندگان
چکیده
منابع مشابه
Diffusive Migration of Low-Mass Proto-planets in Turbulent Disks
Torque fluctuations due to magnetorotational turbulence in proto-planetary disks may greatly influence the migration patterns and survival probabilities of nascent planets. Provided that the turbulence is a stationary stochastic process with finite amplitude and correlation time, the resulting diffusive migration can be described with a FokkerPlanck equation, which we reduce to an advection-dif...
متن کاملGrowing and moving low-mass planets in non-isothermal disks
Aims. We study the interaction of a low-mass planet with a protoplanetary disk with a realistic treatment of the energy balance by doing radiation-hydrodynamical simulations. We look at accretion and migration rates and compare them to isothermal studies. Methods. We used a three-dimensional version of the hydrodynamical method RODEO, together with radiative transport in the fluxlimited diffusi...
متن کاملEvolution of Planets in Disks
The main properties of the observed extrasolar planets are reviewed with respect to their relevance to the formation scenario of planetary systems. Results of numerical computations of embedded planets in viscously evolving disks are presented. Emphasis is given to the accretion and migration process. New calculations on inviscid disks are shown. The second part of the talk concentrates on reso...
متن کاملDiffusive low optical depth particle disks truncated by planets
Two dimensional particle disks in proximity to a planet are numerically integrated to determine when a planet in a circular orbit can truncate a particle disk. Collisions are treated by giving each particle a series of velocity perturbations during the integration. We estimate the mass of a planet required to truncate a particle disk as a function of collision rate, related to the disk optical ...
متن کاملDynamical Evolution of Planets in Disks Planets in Resonant Orbits
We study the evolution of a system consisting of two protoplanets still embedded in a protoplanetary disk. Results of two different numerical approaches are presented. In the first kind of model the motion of the disk material is followed by fully viscous hydrodynamical simulations, and the planetary motion is determined by N-body calculations including exactly the gravitational potential from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astronomy & Astrophysics
سال: 2012
ISSN: 0004-6361,1432-0746
DOI: 10.1051/0004-6361/201219719